58 research outputs found

    Processors (WO 2010/082067 A2)

    Get PDF
    A processing system comprises a plurality of processors (12) and communication means (20) arranged to carry messages between the processors, wherein each of the processors (12) has an operating instruction memory field (32, 34, 36) arranged to hold stored operating instructions including a re-routing target address. Each processor is arranged to receive a message (38) including operating instructions including a target address. On receipt of the message, each processor is arranged to: check the target address in the message to determine whether it corresponds to an address associated with the processor; if the target address in the message does correspond to an address associated with the processor, to check the operating instructions in the message to determine whether the message is to be re-routed; and, if the message is to be re-routed, to replace operating instructions within the message with the stored operating instructions, and place the message on the communication means for delivery to the re-routing target address

    Processors

    Get PDF
    A patent describing a computer architecture which implements a Perspex instruction

    Establishing a connection between knowledge transfer and innovation diffusion

    Get PDF
    Successful innovation diffusion process may well take the form of knowledge transfer process. Therefore, the primary objectives of this paper include: first, to evaluate the interrelations between transfer of knowledge and diffusion of innovation; and second to develop a model to establish a connection between the two. This has been achieved using a four-step approach. The first step of the approach is to assess and discuss the theories relating to knowledge transfer (KT) and innovation diffusion (ID). The second step focuses on developing basic models for KT and ID, based on the key theories surrounding these areas. A considerable amount of literature has been written on the association between knowledge management and innovation, the respective fields of KT and ID. The next step, therefore, explores the relationship between innovation and knowledge management in order to identify the connections between the latter, i.e. KT and ID. Finally, step four proposes and develops an integrated model for KT and ID. As the developed model suggests the sub-processes of knowledge transfer can be connected to the innovation diffusion process in several instances as discussed and illustrated in the paper

    Estimation of water storage changes in small endorheic lakes in Northern Kazakhstan

    Get PDF
    Both climate change and anthropogenic activities contribute to the deterioration of terrestrial water resources and ecosystems worldwide, with Central Asia and its endorheic lakes being among the most severely affected. We used a digital elevation model, bathymetry maps and Landsat images to estimate the areal water cover extent and volumetric storage changes for eleven small terminal lakes in Burabay National Nature Park (BNNP) in Northern Kazakhstan from 1986 to 2016. Based on the analysis of hydrometeorological observations, lake water balance, lake evaporation and Budyko equations, driven by gridded climate and global atmospheric reanalysis datasets, we evaluate the impact of historical climatic conditions on the water balance of the BNNP lake catchments. The total surface water area of the BNNP lakes decreased by around 7% for that period, mainly due to a reduction in the extent of three main lakes. In contrast, for some smaller lakes, the surface area increased. Overall, we attribute the decline of the BNNP lakes’ areal extent and volume to the prolonged periods of water balance deficit when lake evaporation exceeded precipitation. However, during the most recent years (2013-2016) precipitation increased and the BNNP lake levels stabilized

    Intra-annual taxonomic and phenological drivers of spectral variance in grasslands

    Get PDF
    According to the Spectral Variation Hypothesis (SVH), spectral variance has the potential to predict taxonomic composition in grasslands over time. However, in previous studies the relationship has been found to be unstable. We hypothesise that the diversity of phenological stages is also a driver of spectral variance and could act to confound the species signal. To test this concept, intra-annual repeat spectral and botanical sampling was performed at the quadrat scale at two grassland sites, one displaying high species diversity and the other low species diversity. Six botanical metrics were used, three taxonomy based and three phenology based. Using uni-temporal linear permutation models, we found that the SVH only held at the high diversity site and only for certain metrics and at particular time points. We tested the seasonal influence of the taxonomic and phenological metrics on spectral variance using linear mixed models. A significant interaction term of percent mature leaves and species diversity was found, with the most parsimonious model explaining 43% of the intra-annual change. These results indicate that the dominant canopy phenology stage is a confounding variable when examining the spectral variance -species diversity relationship. We emphasise the challenges that exist in tracking species or phenology-based metrics in grasslands using spectral variance but encourage further research that contextualises spectral variance data within seasonal plant development alongside other canopy structural and leaf traits

    Plant profit maximisation improves predictions of European forest responses to drought

    Get PDF
    - Knowledge of how water stress impacts the carbon and water cycles is a key uncertainty in terrestrial biosphere models. - We tested a new profit maximisation model, where photosynthetic uptake of CO2 is optimally traded against plant hydraulic function, as an alternative to the empirical functions commonly used in models to regulate gas exchange during periods of water stress. We conducted a multi-site evaluation of this model at the ecosystem scale, before and during major droughts in Europe. Additionally, we asked whether the maximum hydraulic conductance in the soil-plant continuum

    Design and implementation of Pharyngeal electrical Stimulation for early de-cannulation in TRACheotomized (PHAST-TRAC) stroke patients with neurogenic dysphagia: a prospective randomized single-blinded interventional study

    Get PDF
    Rationale: Ongoing dysphagia in stroke patients weaned from mechanical ventilation often requires long-term tracheotomy to protect the airway from aspiration. In a recently reported single-centre pilot study, a significantly larger proportion (75%) of tracheotomized dysphagic stroke patients regained sufficient control of airway management allowing tracheotomy tube removal (decannulation) 24–72 h after pharyngeal electrical stimulation (PES) compared to controls who received standard therapy over the same time period (20%). Aim: To assess the safety and efficacy of PES in accelerating dysphagia rehabilitation and enabling decannulation of tracheotomized stroke patients. Design: International multi-centre prospective randomized controlled single-blind trial in approximately 126 ICU patients (the 90th percentile of the calculated maximum sample size). Study outcomes: Primary outcome: proportion of stroke patients considered safe for decannulation 24–72 h after PES compared to control patients who do not receive PES. Key secondary outcomes focus on: dysphagia severity, decannulation rates, decannulation rate after a repeat PES treatment in patients persistently dysphagic after an initial PES treatment, stroke severity, duration of ICU-stay, occurrence of adverse events including pneumonia and need for recannulation over 30 days or until hospital discharge (if earlier). Discussion: Dysphagia and related airway complications are reported as one of the main reasons for stroke patients remaining tracheotomized once successfully weaned from ventilation. This study will evaluate if PES can improve airway safety sufficiently enough to allow earlier tracheotomy tube removal

    Has Scots pine (Pinus sylvestris) co-evolved with Dothistroma septosporum in Scotland? Evidence for spatial heterogeneity in the susceptibility of native provenances

    Get PDF
    Spatial heterogeneity in pathogen pressure leads to genetic variation in, and evolution of, disease-related traits among host populations. In contrast, hosts are expected to be highly susceptible to exotic pathogens as there has been no evolution of defence responses. Host response to pathogens can therefore be an indicator of a novel or endemic pathosystem. Currently, the most significant threat to native British Scots pine (Pinus sylvestris) forests is Dothistroma needle blight (DNB) caused by the foliar pathogen Dothistroma septosporum which is presumed to be exotic. A progeny–provenance trial of 6-year-old Scots pine, comprising eight native provenances each with four families in six blocks, was translocated in April 2013 to a clear-fell site in Galloway adjacent to a DNB-infected forest. Susceptibility to D. septosporum, measured as DNB severity (estimated percentage nongreen current-year needles), was assessed visually over 2 years (2013–2014 and 2014–2015; two assessments per year). There were highly significant differences in susceptibility among provenances but not among families for each annual assessment. Provenance mean susceptibility to D. septosporum was negatively and significantly associated with water-related variables at site of origin, potentially due to the evolution of low susceptibility in the host in response to high historical pathogen pressure
    corecore